

DOTTORATO DI RICERCA IN Architettura

CICLO XXXIII

COORDINATORE Prof. Giuseppe De Luca

Seismic vulnerability assessment of the residential URM buildings built during the XX century in Florence

Settore Scientifico Disciplinare ICAR/09

Dottorando Dott. Cardinali Vieri **Tutore** Prof. Tanganelli Marco

(firma)

(firma)

Coordinatore Prof. De Luca Giuseppe *(firma)*

luco fimile

DEGLI STUDI OF FIRE di Architettura

Anni 2017/2020

John M

ACKNOWLEDGMENTS

The presented thesis would have not been possible without the support of many people and institutions that helped me during my three years of research.

I would like to thank my supervisor, Prof. Marco Tanganelli, for the continuous help, the encouragement and support that he constantly demonstrated throughout these years. His experience and intellectual curiosity guided me in the development of the research and the achievement of its conclusions.

I would like to acknowledge Prof. Stefania Viti for her support and tremendous assistance, for her priceless advices concerning my research and how to present it.

I express gratitude to Prof. Mario De Stefano for involving me in several university researchprojects, providing scholarships that allowed me to pursuit my objectives.

I would like to thank Prof. Rita Bento for hosting me six months at the Instituto Superior Técnico in Lisbon. She was a precious guidance in the development of the analytical part of this work and she inspired me towards the advancements of my research.

I would like to thank Casa S.P.A. for the disposition and the interested towards the topics treated in this work. Especially I am grateful to engineers Lorenzo Panerai, Angela Bevilacqua and Leonardo Boschi from the Project and Sites Office.

I want to thank the archivists Elisabetta Bettio and Rita Romanelli for their support during the archive research, for their practical advices and the knowledge they shared with me.

I would like to thank all the members of the PhD body, especially from the curriculum "Structures and conservation of Architecture and Cultural Heritage", for their classes and their direct or indirect support. I thank Grazia Poli for her precious work in the maintenance of the PhD.

I express my gratitude to everyone that, directly or not, helped me in the achievement of this work. I thank my colleagues from Prof. De Stefano's research group: Barbara Paoletti, Maria Teresa Cristofaro, Marta Castellini, Anna Caranti. Moreover, I want to thank Prof. Tommaso Rotunno, Prof. Raffaele Nudo and arch. Maurizio Ferrini for everything they shared with me. I thank prof. Massimo Coli and his group from Earth's Science and Riccardo Mario Azzara from INGV for the continuous exchange of interests. I also would like to acknowledge the technicians of the ex-construction departments of DIDA for the didactic and stimulating moments we shared.

I would like to thank my PhD colleagues Maria Teresa Miele, Margherita Vicario for the path we experienced together, and the "Mexican" colleagues Matteo Bigongiari, Jacopo Giuseppe Vitale, Nuria Chiara Palazzi and Giacomo Talozzi for all the beautiful moments and the stimulating discussions.

I would like to acknowledge my colleagues and friends met in Lisbon, Maria Victoria Requena Garcìa de la Cruz, Madalena Ponte, Claudia Caruso, Rita Couto, Jelena Milosevic, for the moments together and the challenging conversations we had in Técnico.

Finally, I want to thank the people close to me. I want to express my deepest gratitude to my parents, because my achievements are also theirs. I'm thankful they offered me the possibility to study and I seized this opportunity until this last achievement. I love them more than I can express.

I thank my girlfriend Lea for her personal support and for believing in me. She gave me the right peace of mind that helped me in the accomplishment of this work.

Finally, I express my gratitude to my friends and everyone that, gone or still present in my life, directly or not, supported my research and encouraged me in the development and the writing of this thesis.

ABSTRACT

This work deals with the urban scale vulnerability assessment of the unreinforced masonry buildings with RC slabs built during the XX century in Florence. The public housing interventions, for their numerosity and the archive documentation of the design projects, have been chosen as representative of the coeval urban stock. A meaningful database with a large number of selected buildings was realized. Every construction has been firstly investigated adopting an empirical approach based on geometrical and mechanical parameters; houses have been divided into typological classes in function of geometrical and architectonical features. Then, a typology with a specific related case study has been selected and assessed by an analytical procedure. An equivalent frame modeling discretization has been adopted and the seismic performance has been evaluated by means of nonlinear static analyses. Both aleatory and epistemic uncertainties have been considered; then, their sensitivity has been studied. The aleatory uncertainties have been investigated adopting the star design with the central star approach, while the epistemic uncertainties have been modeled through a logic tree approach. Analytical fragility curves have been finally derived, considering both the dispersions in terms of capacity and seismic demand. The fragility curves pointed out the vulnerability of the case study and the related damage scenarios for different expected return periods. Specifically, they showed a high vulnerability of these buildings for the 475 and 975 years return period; for the Life Safety limit state (SLV), around 40% of probability to have DL4 and 40% to reach DL5 is expected. The results have been finally extended to the building class population through a simplified procedure calibrated on the analytical results. The results point out homogeneous outcomes, exhibiting a high vulnerability and a relevant brittle behavior in the plastic phase.

Keywords: urban scale approach, hybrid approach, URM buildings, nonlinear static analysis, EF discretization, residential buildings.

[this page intentionally left blank]

INDEX

1.	Introducti	on	1
	1.1 Assess	sment of the seismic risk in urban areas	1
	1.2 Aims	3	
	1.3 Conte	nts of the Thesis	6
2.	URM Bui	ldings made in the XX century in Florence	9
	2.1 Urban	development of the City	9
	2.2 The P	ublic Housing Interventions	11
	2.2.1	IACP / ATER di Firenze Archive	14
	2.2.2	Archivio Ferrovie dello Stato – ex Direzione	15
		Compartimentale di Firenze	
	2.2.3	Archivio Storico del Comune di Firenze	16
	2.3 Buildi	ng Taxonomy: evidences from the research	17
	2.4 Mecha	anical properties of the materials	23
3.	The propo	sed procedure for the seismic vulnerability	29
	assessmen	t of Florence's URM buildings	
	3.1 Layou	t of the procedure	32
	3.2 The an	nalysis of the urban stock	35
	3.3 The an	nalysis at the building level	37
	3.3.1	Modeling assumptions	37
	3.3.2	Limit states	41
	3.3.3	Intensity Measure	44
	3.3.4	Dispersion	46
	3.3.5	Determination of the damage scenarios	47
	3.4 Hybri	d seismic vulnerability analysis at the urban stock	48
4.	Analysis a	at the urban level	53
	4.1 Buildi	ng database and typological classes	53
	4.2 The si	mple-block model	59
5.	Analytical	assessment of the case study	63
	5.1 Struct	ural modeling	65
	5.2 Episte	mic uncertainties and logic tree approach	66
	5.3 Defini	tion of the seismic demand	75
	5.4 Aleato	ory uncertainties and sensitivity analysis	77
	5.4.1	Definition of the Equivalent viscous damping	79

	5.4.2	Definition of the Intensity Measure and Sensitivity	82
		Analysis	
	5.5 Deriva	tion of the analytical fragility curves	86
	5.6 Final r	remarks of the analytical phase	94
	5.6.1	Evidences from the analytical phase	94
	5.6.2	q-factor definition	94
6.	Adoption	of the fragility curves at urban scale	99
	6.1 The m	echanical method	106
	6.2 Evider	nces from the analysis	111
	6.3 Urban scale vulnerability assessment		114
7.	Conclusiv	e remarks and further developments	119
	7.1 Final r	remarks	119
	7.2 Further developments of the research		122
8.	Reference	s	123
9.	Appendix		137
	Appen	dix 1	139
	Appen	dix 2	143
	Appen	idix 3	145
	Appen	idix 4	147
	Appen	dix 5	163

LIST OF FIGURES

1.1. Advancement of the number of buildings related to technological	2
features in Florence.	
2.1 The Florence city maps. On the left: a1853 city map. The town was all	10
enclosure into the town walls. On the right: the city in 1872; the town walls	
were demolished and new districts were born. (source: Repertorio delle	
Architetture civili, Palazzo Spinelli). Below: the Contemporary city with its	
main districts.	
2.2 From top left: public housing in via Manni, D'Orso, Gelli (1930), Carlo	13
del Prete (1930) and in via Erbosa (1934). Below interventions in piazza	
Terzolle ('30s), Isolotto ('50s), via Baracca ('50s) (Source IACP/Ater	
archive, Fantozzi Micali et al. 2007).	
2.3. Public housing in via Zanella/ via Aleardi. Published project by the	14
head engineer of IACP, Carlo Burci. (source IACP/Ater archive).	
2.4. Left, building plan for a project in via Campo d'Arrigo. On the right,	15
façade of a building in the Isolotto Area (source IACP/Ater archive).	
2.5. Executive section for an intervention in via Centostelle (1949); the	16
different colours indicate the different masonry typologies in the building.	
On the right; executive drawings for a wooden roof in via Paesiello (1946)	
(source RFI archive).	
2.6. On the left: classification of the database from the relationship of the	17
building levels with the soil. On the right: an example of public house with	
underground cellars.	
2.7 Details for the foundations of the investigated masonry buildings	18
(source RFI archive).	
2.8. On the left: drawings from RFI Archive, details of masonry structures.	19
On the right; removal of the plaster layer to check the material constituting	
the walls; a non-optimal disposition of the hollow clay elements was found.	
2.9. On the left: drilling test for the check of the slabs of the terraces of the	21
public houses. On the right; two technical drawings referred to the	
realization of the mixed-RC slabs (source RFI archive).	
2.10. Top on the left: the attic floor with the RC beams sustaining the roof.	22
On the right: detail drawing of the Varese joist for the roof. Below: timber	
roof structures. (Source RFI archive).	
2.11. On the left: an internal stair distributing to two apartments for floor.	22
On the right, up: detail of the connection of the steps into the masonry wall;	
below: drawing of the steps of a stair.	
2.12. Prior and updated distribution for the different mechanical	27
parameters investigated.	

3.1. Thesis flow-chart divided between the three different moments of the	33
work. The urban scale cognitive approach (green colour), the analytical	
probabilistic procedure based on nonlinear static analysis (red colour), the	
definition of general outcomes and the implementation of the results through	
an hybrid approach (blue colour).	
3.2. On the left: idealization of the equivalent frame model and its division	38
into piers, spandrels and rigid nodes. On the right, the nonlinear beam	
describing the behavior of the masonry structures (From Lagomarsino et al.	
2013).	
3.3. Multi-piecewise constitutive law for the masonry structures; on the left,	39
the monotonic response, on the right the cyclic one (From Lagomarsino and	
Cattari, 2015b).	
3.4. In-plane failure criteria implemented in the software. From left to right:	40
flexural rocking, shear sliding and diagonal-cracking (From Oliveira et al.	
2016).	
3.5. The multiscale approach for the definition of PLs. (from Lagomarsino and	44
Cattari, 2015a).	
4.1. In red, the spatial distribution of the public housing interventions	54
collected. The blue line indicates the perimeter of the historical center of	
the city.	
4.2. On top: distribution of three interventions along via Baracca occurred	55
after WWII. (from Tanganelli et al. 2018). Below: GIS screening in the	
Isolotto district. In green, the shapefiles of buildings taken from the	
Regional Technical Map; in red, the identified masonry buildings.	
4.3. Definition of the building classes of the database.	56
4.4. Parameters distributions inside the investigated buildings.	58
4.5. Building planimetries for the block-case	59
4.6. Axonometric view of a typical URM XX century intervention in	60
Florence.	
5.1. The selected case-study; building drawings and photos from the	63
exterior.	
5.2. The numerousness of the buildings for each number of floors category.	64
5.3. N/A stress at the ground level of the building for the static analysis.	65
5.4. The structural models considered in the logic tree approach, for both	68
the main divisions, yes lintels (Y) and no lintels (N) over the openings.	
5.5. The logic tree approach used in this thesis.	69
5.6. PO curves of the No-lintels and Yes-lintels models according to the	70
two directions and the two load patterns	
5.7. Planar deformed shape of the structural model with a mass	71
proportional pattern for the two considered directions. On the left, X	
direction, on the right, X direction.	

5.8. On the right; Capacity comparison between the total PO curve and the	72
resistant walls in X direction, for the mass proportional pattern. On the left,	
damage patterns of the walls.	
5.9. Capacity comparison between the total PO curve and the resistant	73
walls in Y direction, for the mass proportional pattern.	
5.10. Damage patterns of the resistant walls in Y direction for the four	74
considered models, for the two different seismic load patterns.	
Figure 5.11. Geological section of the Florentine area (From Coli &	75
Rubellini, 2015). B bedrock, P Plio-Pleistocene palustrine and alluvial	
deposits, A recent alluvial deposits of the Arno River and its tributaries,	
Aa ancient channel deposits of the palaeo-Arno River. Red line, faults.	
5.12. Set of accelerograms compatible with the soil of Florence for the	76
definition of the Seismic Demand conditioned for the 0.335 s.	
5.13. On top: normalized cumulative damage and drift distribution. Below:	79
the multi-scale approach.	
5.14. Cyclic pushover curves for the N/RS/CB/CB/HB model along the Y	81
direction according the inverse triangular seismic pattern.	
5.15. PO curves of the No-lintel models according to the two directions	82
and the two load patterns.	
5.16. PO curves of the Yes-lintel models according to the two directions	83
and the two load patterns.	
5.17. Variability of the capacity response due to the aleatory uncertainties.	84
5.18. Superimposition assessment of the sensitivity of the different	86
parameters investigated.	
5.19. The PGA values and the relative dispersions for the four models.	87
5.20. The fragility curves for the two no-lintel models.	89
5.21. The fragility curves for the two yes-lintel models.	90
5.22. Damage scenarios for the four different models according the four	93
considered return periods.	
5.23. Definition of q-factor and the overstrength ratio (from Magenes,	95
2006).	
5.24. Computation of the q_0 values according to the different models.	96
5.25. Computation of the OSR values according to the different models.	97
6.1. The fragility curves and relative damage scenarios considering the	99
mean curves within the four logic tree branches.	
6.2. The bilinear simplification for the different PO curves. In red, the	100
mean curve is plotted.	
6.3. PGA differences for the attainment of the different LSs.	103
6.4. Fragility curve comparison between the analytical solutions and the	105
two simplified ones.	

6.5. On the left, comparison between the analytical bilinear curves (dashed	
lines) and the simplified ones (continuous lines). On the right, percentage	
comparison in terms of PGA between the different attainment of the PLs	
for the analytical model and the mechanical method.	
6.6. Comparison of the fragility curves. The red lines plot the simplified	109
curves; the grey ones indicate the analytical results	
6.7. Mass distribution comparison along the height of the model.	111
6.8. Comparison of the α distribution along the elevation of the building.	112
6.9. Equivalent damping distribution along the two directions.	113
6.10. Bilinear capacity curves of the simple-block models along the two	114
directions.	
6.11. Fragility curves of the simple-block models along the X direction	115
6.12. Fragility curves of the simple-block models along the Y direction.	116
6.13. DS for the mean curve and the mean curve accounting for the double	117
of the standard deviation.	

LIST OF TABLES

2.1. Overview of the archive collections investigated for this work	14
2.2. Building features; ventilation floor and thickness of the bearing walls.	20
2.3. Prior values: minimum and maximum ranges defined by the Italian	24
codes for the mechanical parameters of different masonry typologies.	
2.4. Rubble stone masonry, Bayesian approach.	26
2.5. Updated mechanical values: minimum and maximum ranges defined	28
by the Italian codes for the mechanical parameters of different masonry	
typologies.	
3.1. GNDT second level parameters and their relative scores.	36
3.2. Values of the drift levels θ and strength decays β adopted in the work for	39
piers (P) and spandrels (S), respectively, accounting for the bending moment	
and the shear failure.	
3.3. Threshold values for the different scale of interest.	43
5.1. Fundamental period of the different structural models assessed in this	76
work.	
5.2. Aleatory variables introduced in this work.	78
5.3. Viscous damping for the different considered models.	80
6.1. Equivalent damping values adopted in the simplified procedure.	102
6.2. Values of the total dispersion β_T for the different LSs.	103
6.3. DS percentage comparison for the two bilinear assumptions and the	104
analytical solutions.	
6.4. Distribution of the α coefficient towards the two directions along the	106
different levels.	
6.5. Correction coefficients adopted for the calibration.	108
6.6. Damage scenarios for the different LSs for the analytical and	110
simplified models.	
6.7. Proposed coefficient correlation between the spandrel contributions	113
and the behaviour of the structures.	

[this page intentionally left blank]

LIST OF SYMBOLS

Symbol	Definition	Unit
$\Delta_{PLi,Xk}$	Variable that expresses the sensitivity to the	
	aleatory uncertainties	
$\Delta_{PLi,Yj}$	Variable that expresses the sensitivity to the	
	epistemic uncertainties	
T ₁	Fundamental period	S
Δ_{LS4}	Interstory drift limit of the pan	
$\Lambda_{P,DLk}$	internal drift limit for the attainment of strength	
	degradation	
τ_{χ}	Masonry shear strength of the wall	
$A_{u,X}$	Spectral accelerations at the ultimate	m/s^2
	displacement	
D _{u,SPWS}	Ultimate displacement for SPWS configurations	т
D _{u,WPSS}	Ultimate displacement for WPSS configurations	т
D_y	Displacement at the yielding point	т
F _{el,max}	Idealized maximum base shear	kN
F_{y}	Base shear at the yielding point	kN
H_f	Heaviside function	
$K_{i,x}$	Correction factors of the DVM	
M_u	Ultimate bending moment	
V_u	Ultimate shear	
\overline{X}	Mean value of performed tests	
k _r	Vertical regularity factor	
$p_{DSk}(im)$	Discrete probability considering the k-th LS	
	considered.	
Υi	Masonry specific weight at i-th level	kN/m^3
μ_D	Expected level of damage	
$a_{x,y,i}$	The ratio between the resistant masonry area in	
	the considered direction over the gross area, for	
	each <i>i</i> -th, level	
d^*	Displacement of the equivalent SDOF system	m
Ε	Elastic Young's Modulus	MPa
E_d	Energy dissipated during the hysteretic cycle	
E_{s0}	Elastic energy produced towards the two senses	
	of the cyclic analysis	
f_m	Compressive strength	MPa

f_t	Tensile strenght	MPa
f_{v0}	Shear strength according to the Mann and	MPa
	Muller criterion	
$f_{x,y}$	Base shear at the ground floor	kN
f_{ym}	Characteristic yielding stress	MPa
g	Gravity acceleration	9.81 m/s^2
G	Shear Modulus	MPa
Н	Total height of the building	m
h_i	Interstory height of the i-th level	
H_p	Minimum value between the tensile resistance of	
	the interposed element and $0.4 f_h ht$	
k	Ratio between variance of performed tests prior	
	distribution variance	
$k_{x,y,i}$	Spandrels contribution factor defined as the ratio	
	between the total volume of the wall over the	
	volume of the piers	
<i>m</i> *	Mass of the equivalent SDOF system	
mi	Mass of the i-th node of the model	
n	Number of tests of the Bayesian approach	
Nf	Number of floors of the building	
N_p	Number of piers	
q	Q factor behavior	
Q	Macroseismic ductility factor	
q_i	Seismic floor load considering the deal loads and	daN/m^2
	a fraction of the live loads	
Rc	Cubic compressive strength	MPa
S_a	Spectral acceleation	m/s^2
S_d	Spectral displacement	m
T^*	Equivalent period	S
$u_{i,j}$	Displacements of the nodes	
V^*	Base shear of the MDOF system	kN
Y	Vector that collects the values $log(IM_{LS,i})$, $i =$	
	1,,M	
Ζ	Matrix of the normalized values	
$\boldsymbol{\alpha}_{\mathrm{i}}$	Angular coefficient of the hyperplane of the	
	normalized variables	
$\beta_{\rm C}$	Dispersion in the seismic capacity	
β_D	Dispersion in the seismic demand	
Γ	Participation factor	
δ_{Ei}	Drift values	

\mathcal{E}_X	Coefficient ranging between 0 and 1 expressing	
	the behavior of the structure	
$\zeta_{x,i}$	Fraction component in the considered direction	%
η	Damping correction factor	
μ'	Prior mean value	
ξ_{el}	Elastic viscous damping	%
ξ_{eq}	Equivalent viscous damping	%
ξ_{visc}	Hysteretic damping	%
σ_x	Average vertical compressive stress at the	
	middle height of the first level	
$ au_0$	Shear strength according the Turnskek and	MPa
	Cacovic criterion	
ϕ_i	Referred normalized displacement	
$\varphi_{i,j}$	Rotation of the nodes	
Φ	Standard cumulative distribution function	
Ν	Axial force	
b	Ratio of height and length of the panel	
l	Length of the element	т
t	Thickness of the element	m
θ	Drift at the building scale	
μ"	Updated mean value	
μ'	Prior mean value	
σ"	Updated standard deviation	
σ'	Prior standard deviation	